Evaluating the Influence of HCMYV Infection on Alzheimer’s Disease Pathology =5 =
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Forebrain Neuron Differentiation: Control and AD iPSC lines were used in conjunction with the STEMdiff™ Forebrain Neuron Differentiation/Maturation kits (STEMCELL > g 8 - ggﬂ!/ 11 4 ;i o O 10 X > S i 05 T 0.4+ P 024 +
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HCMV Infection: Forebrain neurons were infected with one of two sub-variants of the HCMV clinical strain TB40/E (TB40/E-eGFP or TB40/E-eGFP+mCherry) at a multiplici- " 0 —prp——— aa SHPPRPS S = © < o=l — N = 10 W £ 1 £ £ e L E
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Viral Titering: Conditioned media from HCMV-infected neuronal cultures (D98 of differentiation, 14 DPI) was collected and applied to ARPE-19 epithelial cells. Media was p N
aIIOV\_/ed to remain on the epithelial cells for 7 days. After this period, ARPE-19 cells were fixed with methanol, probed for HCMV Immediate Early gene 1, and counted to de- Figure 1: Model System Characterization and HCMV Permissivity. (A) Timeline for generating electrophysiologically-mature forebrain neurons from pa- g Figure 3: HCMV infection affects neuronal capacity for calcium signaling and action potential generation. (A) In calcium imaging, HCMV infected A
termine titers. tient-derived iPSCs with included infection schedule and experimental endpoints. (B) Immunofluorescence demonstrates culture system is composed pri- KCI-sensi-tive neurons demonstrated lower basal calcium levels. (B) Infection also dampened calcium influx in res .onse to KCl response (,C) Representatvé
Viral Infectivity: Using conditioned media from viral titering experiments, copies of the viralimmediate early gene UL123 were determined via qPCR (vDNAis_oIateq via phe- marily of excitatory (VGLUT2+) and inhibitory (GABA+) neurons, with small populations of astrocytes (Vimentin+) and neural progenitor cells (Ki67+). (C) Im- mages showina HCMV-infected and mock-treated forebrain nel-Jrons ated over the elgctrodes of an MEA plate (%) Example raster |Ot.S demonstrating the
nol-c_hloroform methpd Wlth Ilnea_r acrylamide) relat_lve to a known UL1_23 _standgrd. This value derived from this process was then compared to the number of infectious units aging details HCMV infection of neuronal cultures at 15 DPI, using two clinical subtypes: TB40/E-eGFP and TB40/E-eGFP+mCherry. (D,E) Timecourse fluo- g g _ _ _ _ P . P : : p . P _ g
obtained from viral titering experiments. The resulting ratio denotes viral infectivity. . . . o . . ! e amount of spontaneous action potential generation in cultures +/- HCMV at 5 DPI and 65 DPI. (E) Timecourse data highlighting the detrimental effects of
o _ o _ _ _ , _ rescence of forebrain cultures infected with TB40/E-eGFP+mCherry characterizing immediate-early (D) and late (E) stages of infection. Viral titering data (F) . . L .
Fixation and Immunofluorescence: Neuronal coverslips were fixed in 4% PFA for 15 minutes. Subsequently, coverslips were washed 2x with Dulbecco’s PBS prior to stor- HCMYV infection on neuronal firing, regardless of AD background, from 0 to 50 DPI. p<0.0001

age at 4°C (in dPBS). Antibodies used: GABA (Enzo, GA1159). VGLUT2 (Synaptic Systems, 135403), Vimentin (Abcam, ab24525), and Ki67 (Vector, VP-K451). Imaging \and infectivity data (G) highlight infected neurons’ ability to produce competent virus and relative functional to non-functional virus production, respectively. )\ J

was conducted using a Zeiss LSM980 confocal microscope. r 2

AR Ratio Analysis: Neuronal cultures were either infected (TB40/E-eGFP) or mock-treated at D54, D84, and D114 of differentiation. Infection was allowed to persist for 14 : i

days in all cases, and conditioned media (CM) was collected at D68, D98, and D128, respectively. CM was then used to assess concentrations of secreted amyloid products. H C MV Alte rs AB1 42 a n d pTa u Am o u nts I n FO re b ral n N e u ro n s a n
AR, ,,and AB, ,, values were determined via species-specific ELISA assays (Invitrogen; #KHB3481, #KHB3544). Data is presented as standard amyloid ratio (42/40). N

Soluble/Insoluble Western Blots: Forebrain neurons were infected or mock-treated at D54 of differentiation. After allowing the infection to persist for 14 days, cells were A_ B_
collected and pelleted. Pellets were lysed and underwent ultracentrifugation steps to separate soluble and insoluble proteins, as described by Santarriaga et. al.* Subse- - SC - - - - - - C
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against pTau (Invitrogen, 44-750G) and data analysis was conducted in ImageJ. 1-42 * I . . I t _ TB4O E
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Calcium Imaging: After HCMV (TB40/E-eGFP) exposure or mock-treatment at D77, infection in neuronal coverslips was allowed to persist for 7 days (D84 of differentiation).

At 7 DPI, coverslips were washed with extracellular normal HEPES (ENH) and bathed in FURA 2-AM ratiometric calcium dye (Invitrogen, #F1221) for 45 minutes. Before im- 0.20- ns ns ns * * %

aging, cells were again washed with ENH to remove excess FURA 2-AM. Cells were stimulated using 10uM ATP and 50uM KCI to evoked potentials from glia and neurons, ] |_

respectively. Appropriate washout times were implemented between stimulant administrations. Presented data is limited to . - -

KChsensitve csls (neurons), : =  HCMV-infected neurons demonstrate decreased secreted AR, ,, rela-
Microelectrode Array (MEA) Assay: After initial progenitor differentiation, neuron cultures were plated onto 48-well Cytoview - : . . -

MEA plates (Axion BioSystems, M768-{MEA-48W) using poly-L-lysine and laminin as substrates. Care was taken to ensure cell .- Y t|ve to m ock-t re ated CcO ntrol S an d increa sed |eve| S of pTa u ove ral | ]
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(TB40/E-eGFP) or mock-treatment. Throughout culturing, recordings were taken 3x weekly using a Maestro MEA system (Axion
BioSystems). MEA recording paradigm consisted of 6 minutes of spontaneous recordings, followed by 2 minutes of evoked (0.5V
stimulation, 10s intervals). Neurons were maintained for 50+ DPI.
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 Infection alters neuronal function via (1) decreasing calcium baseline
and KCl-stimulated influx and (2) diminishing action potential genera-
Mock HCMV tion by 15 DPI.
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Data Analysis: Statistical comparisons drawn from one- and two-way ANOVAs, as appropriate. All statistics utilize a significance
value of p<0.05.
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