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INTRODUCTION Fig. 2. Differentiation of ctrl and 1494V IPSCs into cortical glutamatergic neurons Fig. 5. 1494V iGlut neurons are hypoactive in MEA
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levels can effectively restore the hypoactivity associated with 1494V. Future
studies will focus on 1) dosing KCNH1 ASO and 2) testing the effect of the
KCNH1 ASO on other GOF mutations. The model system we established will
help to understand the pathobiology of seizures associated with KCNH1 GOF
mutations and to test various treatment modalities, including ASOs.
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