Validation of astrocytic cAMP signalling to study therapeutic targets for Alzheimer’s disease
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1. Introduction

Astrocytes play a fundamental role in pathological processes associated with neurodegenerative diseases,
including neuroinflammation, impaired glutamate uptake, reduced neurotrophic support and defective
metabolism. Activation of cAMP signalling in astrocytes elevates glycolytic rate, increases glutamate
transporter and neurotrophic factor expression, and suppresses the immune response. Molecules that
" modulate astrocytic cAMP signalling are therefore potential therapeutic targets for neurodegenerative
diseases such as Alzheimer's disease (AD). To support the identification and validation of astrocyte-centric
targets, we have optimised a suite of in vitro assays including cAMP, Ca2*, and metabolic assays, multi-
electrode array (MEA) and RNA-seq in rodent, human foetal and hiPSC-derived control and familial AD
(fAD) astrocyte models. We have tested the adenylyl cyclase activator forskolin and a GPCR agonist in
these assays to validate and increase our confidence in astrocytic cCAMP signalling as an AD drug target.
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GPCR RNA expression in control and AD hippocampus. A-B) RNAscope analysis demonstrating GPCR co-
localisation with EAAT2 (astrocytic marker; (A)) and MAP2 (neuronal marker; (B)) in human control hippocampus. C)
gPCR analysis of GPCR RNA expression relative to TBP and UBE2D2 in human hippocampus, n=7-17 biological
replicates. qPCR data shown as mean + SEM and analysed using one-way ANOVA, ns= non-significant.
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/ 4. cAMP activation in rodent primary astrocytes\
reduces the expression of inflammatory genes
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A Principal component analysis (PCA)
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RNA-seq analysis of rat primary astrocytes treated with 10pM forskolin
8 or 24h. (A) PCA analysis, (B) Gene Ontology (GO) analysis for biological processes carried out on the 200
significantly up-regulated genes (UP) and the 200 significantly down-regulated genes (DOWN), with the greatest
log, fold change at the 4h and 8h timepoints. Pathways below dashed line have a false-discovery rate
(FDR)>0.05. (C) Volcano plots of significantly upregulated genes (red; FDR<0.05) and downregulated genes (blue;
QR<0.05) at 4h and 8h post-GPCR agonist treatment. (D) FPKM values of individual genes. N=3 bio\ogicy
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ﬁ. cAMP activation increases glycolytic rate irﬁ

rodent primary and human foetal astrocytes
Rat primary astrocytes

normalised to cell number
Vehicle = H,0 (B and C), 0.1% DMSO (A) and 0.2% DMSO (D). IBMX = 3-Isobutyl-1-methylxanthine.
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Basal and maximal glycolytic rates after acute forskolin or Gs-coupled GPCR agonist administration.
Glycolytic rate was measured in rat primary astrocytes (A and B), 2-week matured hiPSC-derived control
and fAD astrocytes (C), human foetal astrocytes (D) using the Seahorse XFe96 analyser (Agilent) and
glycolytic rate assay kit. Representative mean + SEM traces, 3-10 technical replicates per condition. Data
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in rodent co-cultures of astrocytes and neurons
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Neuronal activity in rat primary co-cultures of astrocytes and neurons treated with a GPCR agonist. (A)
Agonist or vehicle was administered at DIV14 at 0.15h; mean firing rate was recorded for 15 minutes at the
indicated timepoints using the Maestro Pro multielectrode array (MEA) system (Axion Biosystems), n=6
technical replicates. (B) Percentage change in firing rate vs baseline at 2h post-agonist or vehicle
Qeatment, n=4 biological replicates. (C) Raster plot of neuronal activity in a single well 2 hours post-agonist

or vehicle treatment. Vehicle = cell culture media.
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7. Summary N

We have demonstrated that RNA levels of a G;-coupled GPCR are not altered in the AD brain.
Both forskolin and the GPCR agonist elevate glycolytic rate in rat and human foetal astrocytes,
suggesting that the mechanism is cAMP-mediated. Interestingly, the GPCR agonist enhances
neuronal firing in vitro in neuron-astrocyte co-cultures. Finally, RNA-seq analysis identified cCAMP
pathway and inflammatory genes as major targets of both forskolin and GPCR agonist
administration. Overall, our data suggest that activation of astrocytic cCAMP signalling has exciting
therapeutic potential as a treatment for AD.





































